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SUMMARY 
This paper deals with a critical evaluation of various finite element models for low-viscosity laminar 
incompressible flow in geometrically complex domains. These models use Galerkin weighted residuals 
UVP, continuous penalty, discrete penalty and least-squares procedures. The model evaluations are based 
on the use of appropriate tensor product Lagrange and simplex quadratic triangular elements and a newly 
developed isoparametric Hermite element. All of the described models produce very accurate results for 
horizontal flows. In vertical flow domains, however, two different cases can be recognized. Downward flows, 
i.e. when the gravitational force is in the direction of the flow, usually d o  not present any special problem. 
In contrast, laminar flow of low-viscosity Newtonian fluids where the gravitational force is acting in the 
direction opposite t o  the flow presents a difficult case. We show that only by using the least-squares method 
in conjunction with C'-continuous Hermite elements can this type of laminar flow be modelled accurately. 
The problem of smooth isoparametric mapping of C' Hermite elements, which is necessary in dealing with 
geometrically complicated domains, is tackled by means of an auxiliary optimization procedure. We 
conclude that the least-squares method in combination with isoparametric Hermite elements offers a new 
general-purpose modelling technique which can accurately simulate all types of low-viscosity incompressible 
laminar flow in complex domains. 

KEY WORDS Galerkin method Hermite, Lagrange and simplex finite elements Mixed UVP Continuous and discrete 
penalty Least-squares method Low-viscosity laminar flow 

INTRODUCTION 

From an experimental point of view, low-viscosity laminar flow is often difficult to generate and 
maintain. This type of flow, however, occurs during membrane filtration of slurries and in metal 
casting and thus its study is needed. In this paper we aim to show that despite the apparent 
simplicity of this type of flow, which can generally be considered as Newtonian, the numerical 
modelling of it is not a trivial task. In particular, when the flow has a vertical upward direction 
and the fluid viscosity is small enough to make the opposing gravitational force significant, it 
is very difficult to obtain accurate solutions. This is similar to the findings of other investigators 
concerned with the numerical modelling of buoyancy-driven flows and the upward flow of 
low-viscosity fluids in moving boundary problems such as metal-casting processes. These 
workers have made remarks about the lack of a general-purpose foolproof method in dealing 
with such flow situations.' In some cases they have devised ad hoc methods to deal with the 
gravitational force in the dynamical equations.' 
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The low-viscosity laminar flows considered in this work are not creeping Stokesian regimes 
and therefore a valid mathematical model for them should include the convection terms in the 
governing equations of motion. The resulting non-linearity precludes any analytical solution of 
the model even for cases where the flow domain geometry and boundary conditions are very 
simple. For a long axisymmetric pipe, however, the exit velocity profile can be considered as 
developed and numerically obtained solutions for this section can be compared directly with 
the analytical velocities. We present a test case where we can compare the numerically simulated 
exit velocity profiles and the flow domain pressure field with the analytical exit velocity and 
hydrostatic pressures. These comparisons are used to evaluate the accuracy of various scheme- 
element combinations which produce stable results for the flow regime under study. The inclusion 
of thermal effects does not alter the conclusions of this work and thus we consider isothermal 
laminar flows. 

MATHEMATICAL MODEL 

The steady isothermal flow of an incompressible Newtonian fluid is governed by the following 
equations of continuity and motion: 

f1 = v * v  = 0, 

f 2  = pv.Vv - Q .  T- g = 0, 

(1) 

(2) 

where v is the velocity vector, p is the density, T is the total stress tensor and g is the body 
force vector. The total stress T is given by 

T = - ~ 6 + t ,  (3) 

where p is the pressure 6 is the unit second-order tensor and T represents the deviatoric stress. 
For a Newtonian fluid the deviatoric stress is expressed as 

t = 2 4 4  (4) 

A = 3 V v + V v T ) .  ( 5 )  

where q is the Newtonian viscosity and A is the rate-of-deformation tensor given as 

Weighted residual statement of the model equations 

representations i and 
domain Cl to yield3 

The prime unknowns in the model equations are replaced by approximate trial function 
and the resulting residuals are weighted and integrated over the solution 

j awV. td12=0 ,  jo w(pi.Vi - V -  3: - g) dR = 0, (6) 

where w is an appropriate weight function. The trial functions are expressed in terms of basis 
functions N j  and cardinal co-ordinates as 

i = 1 N j v j ,  

7 = N j l j .  

In the finite element context the interpolation functions will represent the basis functions and the 
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nodal values of the variables will be the cardinal co-ordinates. For simplicity of writing we drop 
the ' - ' sign in the following equations. Application of Green's theorem (integration by parts) 
to the stress term in equation (6) gives 

jn wpv-VvdR+ V w - T d R -  WT-ndT-  wgdR=O,  I !r I (9) 

where 
Substituting for T in the second term of equation (9) from equation (3) gives 

is the boundary surrounding R and n is the unit outward vector normal to r. 

l n w p v - V v d R + j n V w - r d R -  I Vw-SpdR-/nwgdR=]r  wT-ndT .  (10) 

We use the prescribed inlet velocity profiles together with the no-slip solid wall and stress-free 
exit conditions as the boundary data in the present study. Thus the general form of the boundary 
conditions used is 

v = vo on rl (inlet), T -  n = 0 on r2 (exit A line ofsyrnrnetry), 

u1 = u2 = 0 on r3 (walls), 

where 

rl r2 u r3 = r. 
In the standard Galerkin method used here the weight and interpolation functions are identical. 

Least-squares statement of the model equations 

Replacing the prime unknowns in the model equations with the approximate representations 
in terms of trial functions, we obtain residuals. We then square and integrate these residuals 
over the solution domain to develop a functional statement as 

where the index i refers to individual components of the tensorial variables with summation 
over the repeated index. The constant k is used to make the above statement dimensionally 
consistent. Minimization of the functional (1 1) leads to the working equations of the least-squares 
~ c h e m e . ~  

Finite element schemes 

The Galerkin weighted residual methods used are as follows. 

Mixed UVP formulation. In this scheme the working equations are based exactly on equations 
(6)  and (10). The only important factor to consider is that for an incompressible flow the selected 
element discretization should be such that the BBL condition is ~at isf ied.~ Thus we have used 
isoparametric Taylor-Hood and Crouzeix-Raviart Co-continuous elements of tensor product 
or quadratic triangular simplex type6 in this scheme. 

Continuous penalty formulation. In this scheme the pressure in the working equation (10) is 
replaced by 

p =  -1v.v, (12) 
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where ,I is a penalty ~ a r a m e t e r . ~  This results in a compact formulation in terms of the velocity 
components and the pressure should be calculated after obtaining the velocity field via 
variational recovery.' We have used isoparametric Co-continuous quadrilateral and triangular 
elements in this formulation with a selectively reduced integration procedure where the penalty 
terms are evaluated with a higher degree of approximation. 

Discrete penalty formulation. In this scheme the penalty equation (12) is initially discretized 
and then, using this discretized form, the pressure is eliminated from the set of working 
equationse6 This again results in a compact formulation and the pressure is calculated separately 
using the solution obtained for the velocity field. This approach can most conveniently be 
adopted if the type of elements used allows a discrete elemental mass matrix inversion during 
the process of elimination of the pressure from the equations. Therefore we used Co-continuous 
isoparametric Crouzeix-Raviart-type elements in this scheme. 

Least-squares formulation. Using the finite element discretization, we develop the working 
equations of this scheme in terms of the nodal values of the variables and the associated 
interpolation functions in the r-z co-ordinate system. These working equations are expressed as 

ac = lR 2[ f..(pv - VN, - VAN, + 
dvrj 
^ ^  n 
dCi 
- = J 2[f2,(pv * VNj - qANj) + kf1Nj,,] dR = 0, 
dvzj R 

where 

is the Laplacian in the cylindrical co-ordinate system and the measure of integration is given by 

dR = r dr dz. 

The set of equations (13) comprises the basic working equations in this scheme. The existence 
of second-order derivatives in these equations makes it necessary to use C'-continuous elements 
in the least-squares formulation. Complications associated with the use of C' elements have 
been considered as a drawback for this scheme in the past.* In this paper we present a method 
for the development of isoparametric C'-continuous Hermite elements which cope with the 
continuity requirement of the least-squares scheme as well as being very effective in dealing with 
domains with curved boundaries. 

Four-node isoparametric C'-continuous Hermite element 

The basic procedure for the development of the Hermite elements used in this work consists 
of the following steps. 

(i) A topological equivalent of the real domain using square elements is constructed in which 
the number of elements and nodes and the element connectivity remain the same as in the 
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solution domain. We define a local co-ordinate system <-q within each square element. We refer 
to these elements and their local co-ordinate system as the master elements and master 
co-ordinates respectively. 

(ii) We construct an intermediate stage of mapping based on bilinear isoparametric shape 
functions between the master elements and the solution domain as if the latter is comprised of 
Co quadrilateral elements. This mapping is expressed as 

2 = 1 f l l Z 1 ,  j = X f l J 1 ,  (15) 
I I 

where N ,  are the bilinear shape functions and r?, and y, are the nodal co-ordinates in a global 
co-ordinate system defining the intermediate stage of mapping (Figure 1). The purpose of this 
stage is to establish a one-to-one relation between the master and solution domains. It must be 
noted, however, that this mapping is continuous but not sufficiently smooth. Later in this section 
we show that the construction of isoparametric C' elements requires smoothness as well as 
continuity. 

(iii) For the four-node elements chosen here there are four degrees of freedom per node. These 
degrees of freedom represent a given function V, the first derivatives of the function with respect 
to < and r]  and the second-order mixed derivative of the function. Therefore altogether we need 
to construct 16 interpolation functions to define the element. The 16 bicubic interpolation 
functions associated with a four-node rectangular Hermite element in a local co-ordinate system 
5 and q are easily obtained via the tensor products of one-dimensional Hermite interpolation 
relations in terms of single variables.' Therefore within such an element a function V(5, v )  can 
be found as an interpolant given by 

w, r ] )  = RT(& r ] )  ' VU). (16) 

Here V,,, is the node1 degree of freedom vector and N(<, r ] )  are the tensor product interpolation 
functions defined as 

R(t, 'I) = A(<) 0 fib) (17) 

Figure 1 .  Construction of CL isoparametric mapping in curved domains 
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where M(g) and M(q) are one-dimensional Hermite shape functions. The 16 shape functions 
described above are represented as 

N = [ N l i , I = l  ,..., 4 , i = l ,  ..., 41, (18) 

where I is the index for node numbers and i is the index for degrees of freedom. These shape 
functions fulfil the necessary requirements of linear independence." 

(iv) The final stage of construction of the isoparametric C' mapping is based on the definition 
of interpolation relations given by 

where flIi ( I  = 1, . . . ,4 ,  i = 1,.  . . ,4)  represent the previously constructed Hermite shape func- 
tions, x and y are the global co-ordinates in the real domain (Figure 1) and XIi and K i  are the 
nodal degrees of freedom with respect to the global co-ordinate system. These are defined by 

X' = [. . XI; x,<j; x,qI; x,<qI;. * . I 3  YT = [...; y,; y,<r; Y , q l ;  Y . < & . . l .  (20) 

Equations (19) involve CL Hermite shape functions and therefore describe a smooth mapping, 
but so far it is uncertain whether they give a one-to-one relation between the master and global 
domains. Since such a relation has already been given in terms of bilinear elements, it is evident 
that by minimizing the difference between these two mappings we may achieve this goal. This 
is done by an optimization process based on minimization of the functional 

This leads to the construction of a set of linear algebraic equations in terms of the nodal values 
of geometrical functions and their derivatives (i.e. X and Y ) .  After insertion of the properly 
defined co-ordinates and derivatives at the external boundary nodes, this set becomes determi- 
nate and its solution provides nodal values at the internal grid points. At the external nodes 
the geometrical function values are found by the mollifier relation" 

I- l I -  

The use of these boundary values ensures that the obtained geometrical functions define a 
mapping image which closely represents the computational domain. 

(v) The described isoparametric mapping gives relations between the master and real 
computational domains. These can be written as 

x = x(5, d,  Y = Y(5,rl). (23) 

The corresponding shape (interpolation) functions are defined as 

NTb, Y )  = AT(&, Y ) ;  ~ ( x ,  Y ) )  - C, (24) 

where 5(x, y )  and ~ ( x ,  y) are the inverse of the mapping relations given by (23) and Cis  expressed 
as 
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C =  

22  1 

- 
1 0 

1 
1 

0 1 

which results from the construction of relations between the first-derivative degrees of freedom 
in the master and global co-ordinate systems. There is no need to relate the local and global 
values of mixed derivative degrees of freedom, because these derivatives are never given as 
boundary conditions. The solution of the model equations can be effectively carried out by 
maintaining these degrees of freedom at the local level. In other words, in any given problem 
the values of the function V(x ,  y), the first derivatives YX(x, y) and YY(x ,  y) and the mixed 
derivative of the type Yn(x ,  y) at  the nodal points are sought as the necessary solution. 

The first-order derivatives of the shape functions with respect to the global co-ordinates are 
given as 

The C' continuity of the transformation implies that the inverse mapping is smooth and thus 
the derivatives of the shape functions with respect to the global co-ordinates are continuous. 
This in turn guarantees that the shape functions themselves are smooth. The second-order 
derivatives of the shape functions with respect to the global co-ordinates, which are necessary 
for the least-squares formulation, are found using the chain rule and are given as 

N , x x  = f i ,<t ; (5 ,J2 + 2fi.&?l,, + f i *vv (v ,x )2  + f i . < t . x x  + f i , q v , x x 9  

NqXY = &<Lt , y  + f i , 5 q ( r . x ? l . y  + t . Y V , J  + R v v v , x ? l . y  + f i . 5 t , x y  + f iJLY? 

N,YY = f i , < d t , Y Y  + 2 ~ , 5 q t . y v . y  + f i . q q ( v , Y ) 2  + f i , < t . Y Y  + f i d . Y Y .  

(28 )  

Details of the derivation of the first- and second-order derivatives of the inverse transformation 
(i.e. tX, t,,, etc.) have been published previously.' ' The isoparametric Hermite shape functions 
described above are linearly independent since the transformation is one-to-one and they are 
smooth because the isoparametric mapping is smooth. 

COMPUTATIONAL RESULTS AND DISCUSSION 

Upward flow of water in a vertical pipe of 0.05 m diameter and 1 m length is chosen as the test 
problem. The boundary conditions in this problem are a given plug flow inlet velocity of 
0.01 ms-', zero radial velocity at the exit and no-slip wall conditions. For the least-squares 
method, because of the use of Hermite elements, first-order derivatives of the velocity components 
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should also be specified. For the test problem the values of these derivatives on the domain 
boundaries are zero. 

The prescribed zero radial velocity at the exit of this long pipe corresponds to a developed 
axial velocity profile at this section. This enables us to compare our computed exit velocities 
with the analytical results. We can also compare the numerically obtained pressure fields with 
the expected hydrostatic head for this problem. The Reynolds number for this flow is 500 and 
the convection terms in the governing equation of motion are significant, so the test problem 

Table I. Comparison of simulated and analytically obtained exit velocities and of the calculated pressure 
drop with the hydrostatic pressure 

Mesh of 100 quadrilateral Mesh of 200 triangular 
elements elements 

Water Higher viscosity Water Higher viscosity 
q = Pa s q = l  P a s  q = Pa s q =  1 P a s  

Error (%) Error (%) Error (YO) Error (%) 

Scheme v,, "z P 4, 0, P u.3 u z  P 4. v z  P 

5 

> 50 

5 1 - 5 

Continuous penalty bi- 
quadratic Lagrange elements; 
Mesh refined near the wall >50 1 1 1 > 50 1 1 1 
(standard Galerkin) 
Continuous penalty bi- 
quadratic Lagrange elements; 
uniform mesh 5 1 5 1 5 I 5 1 
(standard Galerkin) 
Discrete penalty bi- 
quadratic Crouziex-Raviart 
element with rotated three- 

sampling; mesh refined 
near the wall 
(standard Galerkin) 
Discrete penalty bi- 
quadratic Taylor-Hood 
element with four-node 
discontinuous pressure 
sampling; mesh refined 
near the wall 
(standard Galerkin) 
UVPl biquadratic Crouziex- 
Raviart element with rotated 
three-node discontinuous 
pressure sampling; mesh 
refined near the wall 
(standard Galerkin) 
UVP2 biquadratic Taylor- 
Hood element with four- or 
three-node continuous 
pressure sampling; mesh 
refined near the wall > 50 > 50 <0.2 <0.2 >50 >50 <0.2 <0.2 
(standard Galerkin) 
LSQ-isoparametric 
Hermite element; mesh <0.2 <0.2 <0.2 <0.2 - - - - 

refined near the wall 

node discontinuous pressure 1 

1 5 1 

1 5 1 
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'4.0 
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~~30.02 u l s  

4 - 0 1  (Vr 4 0.0 118 

Figure 2. Flow domain dimensions and prescribed boundary conditions. Inlet velocities are chosen to be parallel to the 
element boundaries 
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represents a truly non-linear case. In order to show that the computational results are 
significantly affected by the fluid viscosity, we repeated the simulations for a similar flow regime 
with a higher viscosity of 1 Pa s. 

Our conclusion is that except for the least-squares-Hermite element scheme, all methods fail 
to produce an acceptable velocity or pressure field for the vertical flow of water with opposing 
gravity. We found that as the fluid viscosity increases, the problem becomes easier and other 
schemes such as Galerkin weighted residual mixed UVP in conjunction with Taylor-Hood or 
triangular simplex elements also give very good results. This can be attributed to the fact that 
as the viscous forces in the equation of motion increase, the gravitational force becomes less 
significant. In Table I a summary of all our stable results for the test problem is given. The 
errors indicating the measure of accuracy of different scheme-element combinations are found 
on the basis of the previously described comparisons with analytical data. Except for the 

Figure 3. Coarse mesh of 28 four-node Hermite elements 
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least-squares method, all schemes produce much worse results (by as much as 20%) if only the 
near-solid-wall nodes are considered. 

The dimensionality constant ( k  in equation (11)) in the least-squares method is found by trial 
and error. A value between lo6 and 10" is usually used. The best value for this constant in our 
test problem is lo7. The use of such a large number makes the stiffness equation of the scheme 
ill-conditioned. In order to overcome this difficulty, we have applied a selectively reduced 
integration to evaluate terms multiplied by this constant. This is analogous to the treatment of 
the penalty parameter terms in the penalty methods. It can be shown, however, that while in 
the case of the penalty methods the use of selectively reduced integration is a must, for this 
situation it is only a preconditioning measure. Severely ill-conditioned stiffness matrices are 
encountered in all schemes which use the discontinuous three-node Crouziex-Raviart element. 
We found that a modification of the original element configuration based on 45" rotation of the 

Figure 4(a) Computed velocity field 
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pressure-sampling nodes with respect to the local 5 ‘1 co-ordinate system resolves this difficulty. 
The described least-squares-isoparametric Hermite element scheme is a robust method and can 
deal with flow domains with curved boundaries. In order to illustrate this, we applied the model 
to simulate the vertical flow of water in a converging-diverging annulus with a given irregular 
inlet velocity profile. The isoparametric mapping of four-node Hermite elements even for a 
relatively coarse mesh with 28 distorted elements gives very reasonable results. The flow domain 
dimensions and prescribed boundary conditions are shown in Figure 2. In Figure 3 the finite 
element mesh used and in Figure 4(a) the corresponding computed velocity field are shown. In 
Figures 4(a) and 4(b) additional velocity and pressure values at centre nodes (which are not 
originally present in a four-node element discretization) are found by using interpolation 
procedures. The computed pressure isobars shown in Figure 4(b), except for an expected minor 
deviation at  the exit section, correspond exactly to the hydrostatic pressure field representative 
of a low-viscosity vertical flow. 
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